instances icon

Instances

arrow down icon
regions icon

Target Regions

arrow down icon
target hemisphere icon

Target Hemispheres

arrow down icon
connection sources icon

Connection Sources

arrow down icon
file icon

Types of file

arrow down icon
Instance
Target Region
Hemisphere
Source
File Type
4116 Results
0
ACAd
left
contra
matrix
0
ACAd
left
contra
indices
0
ACAd
left
ipsi
matrix
0
ACAd
left
ipsi
indices
0
ACAd
left
local
matrix

Neuron Information

0
neuron information
1
neuron information
2
neuron information
3
neuron information
4
neuron information
5
neuron information
6
neuron information
7
neuron information

Connectomes are stored as scipy.sparse.csc_matrix objects in .npz format.

To read in python:

from scipy import sparse
M = sparse.load_npz('MOs_right_ALL_INPUTS_ipsi.csc.npz')

Each such connection matrix will have a shape of N x M, where N is the total number of neurons in the model (almost 10 million) and M is the number of neurons in the target region (depends on that region). This means that the first axis denotes the presynaptic neuron and the second axis the postsynaptic neuron.

Each matrix file is accompanied by a file that specifies the global indices of the target neurons, i.e. the indices of the same neurons along the first axis. It contains a nympy array of length M in .npy format. It can be used for example to find the connectivity originating form the same neurons in a different matrix and will be required to assemble a full N x N matrix.

To read in python:

import numpy
idx = numpy.load('MOs_right_ALL_INPUTS_indices.npy')